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Substance 
SrGeO3 BLs chosen 

(a)(b) 
(20) 

(c) 

(a)(b) 
(2M) 

(c) 

(a)(b) 
(6H) 

(c) 

Table 2. Descriptive symbols for  SrGeO3 

Full symbo l  Simplified symbol Number of equivalent 
(redundant) (nonredundant) BLs per repeat Space group 

[papol 
1301 2 Ccmm 

]P3Pol 

Iplp2l ]12[ 2 C2/cll 
l P1/'21 

I P3P4PsPoPl P2I 
13 4 5 0 l 21 6 P6~22 

IP3P4PsPoP, P21 

the c axis. They are accordingly assigned the charac- 
ters n = 0, 1 , . . . ,  5. The character 0 (or 6) denotes the 
vector parallel to - a  of the orthogonal C-centered 
base a, b = av/3. 

An example is given in Table 2. 

B. Illustrative papers on polytypic substances with 
description of  symbolism used 

Astrophyllite 
Zvyagin & Vrublevskaya (1976). 

Kaolinite-type structures 
Zvyagin (1964, 1967) (tri- and di-octahedral poly- 

types). 
Dornberger-Schiff & 13urovi~ (1975) (tri-, di- and 

mono-octahedral polytypes). 

Mica 
Zvyagin (1964, 1967) (tri-octahedral polytypes). 
Takeda (1967) (tri-octahedral pol~types). 
Dornberger-Schitt, Backhaus & Durovi~ (1982) 

(tri-, di- and mono-octahedral polytypes). 

Vermiculites 
Weiss & 13urovi~ (1980). 

References 
DORNBERGER-SCHIFF, K. (1961). Kristallografiya, 6, 859-868; 

Soy. Phys. Crystallogr. (1962), 6, 694-703. 
DORNBERGER-SCHIFF, K., BACKHAUS, K. O. & I)UROVIC, S. 

(1982). Clays Clay Miner 30, 364-374. 
DORNBERGER-SCHIFF, K. & DUROVI~, S. (1974). Collected 

Abstracts, 2nd European Crystallographic Meeting, Keszthely. 
DORNBERGER-SCHIFF, K. & I)UROVIt~, S. (1975). Clays Clay 

Miner 23, 219-246. 
DORNBERGER-SCHIFF, K., I~)UROVI(~, S. & ZVYAGIN, B. B. 

(1982). Cryst. Res. Tech. 17, 1449-1457. 
GARD J. A. (1966). Nature (London), 211, 1078-1079. 
HAGG, G. (1943). Ark Kern. Mineral Geol. 16B,1-6. 
International Tables for Crystallography (1983). Vol. A. Dordrecht: 

Reidel. 
RAMSDELL, L. S. (1947). Am. Mineral 32, 64-82. 
STRUNZ, H. (1966). Mineralogische Tabellen, Vol. 4. Leipzig: 

Academischer Verlag. 
TAKEDA, H. (1967). Acra Cryst. 22, 845-853. 
VERMA, A. R. & KRISHNA, P. (1966). Polymorphism and Polytypism 

in Crystals, pp. 83 ft. New York: Wiley. 
WEISS, Z. & DUROVI¢ S. (1980). Acta Cryst. A36, 633-640. 
ZHDANOV, G. S. (1945). C. R. (Dokl.) Acad. Sci. URSS, 48, 40-43. 
ZVYAGIN, B. B. (1964). Elektronografiya i Strukturnaya Kristal- 

lografiya Glinistykh Mineralov. Moskva: Nauka. 
ZVYAGIN, B. B. (1967). Electron Diffraction AnaLYSIS OF Clay 

Mineral Structures. New York: Plenum Press. 
ZVYAG1N, B. B. (1974). Collected Abstracts, 2nd European Crys- 

tallographic Meeting, Keszthely. 
ZVYAGIN, B. B. & VRUBLEVSKAYA, Z. V. (1976). Kristallografiya, 

21,949-954; Soy. Phys. Crystallogr. (1976), 21, 542-545. 

Acta Cryst. (1984). A40, 404 410 

Graphic Representation and Nomenclature of the Four-Dimensional Crystal Classes. 
III. A Notation for the Crystal Classes 

BY E. J. W. WHITTAKER 

Department o f  Geology and Mineralogy, Oxford University, Parks Road, Oxford O X  1 3 PR, England 

(Received 28 November 1983; accepted 30 January 1984) 

Abstract Introduction 

A Hermann-Mauguin  type notation is devised for 
the 227 four-dimensional (geometric) crystal classes, 
and appropriate conventions are proposed for each 
of the 23 crystal families. 

In paper I of the series (Whittaker, 1983) the principle 
was demonstrated of  representing graphically the 
symmetry of the four-dimensional crystal classes by 
means of the hyperstereogram. Such representations 
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were produced for the first sixteen crystal classes, 
containing symmetry operations of order not greater 
than two. The possibility of visualizing the nature of 
the symmetry in this way suggested a symbolic 
nomenclature following the general principles of the 
Hermann-Mauguin notation, and such a notation 
was developed for the sixteen crystal classes that were 
illustrated. In paper II (Whittaker, 1984a) all the crys- 
tallographic symmetry operations of order greater 
than two were examined and their effects illustrated 
by means of hyperstereograms. This has helped to 
clarify their nature and their orientational characteris- 
tics, and for all of them unitary symbols have been 
introduced that are suitable for incorporation in a 
Hermann-Mauguin-type notation for the crystal 
classes. Hyperstereograms have now been prepared 
for all the 227 four-dimensional (geometric) crystal 
classes tabulated by Brown, Billow, Neubiiser, 
Wondratscheck & Zassenhaus (1978), and these will 
be published elsewhere (Whittaker, 1984b). On the 
basis of this work it has been possible to develop a 
complete notation for all these crystal classes, 
although it has proved desirable to introduce slight 
modifications into the original one devised for the 
first sixteen. It is the purpose of this paper to describe 
and tabulate this complete notation. 

P r i n c i p l e s  o f  the  nota t ion  

It was pointed out in paper I that the main difficulty 
in the way of a Hermann-Mauguin style nomen- 
clature in four dimensions is that the orientation of 
a plane is not specifiable by the direction of a line 
perpendicular to it. The device was therefore adopted 
of splitting the symbol into two parts separated by a 
semicolon. The first part consisted of a sequence of 
positions each of which specified (according to a 
convention) the orientation of a line. Each such posi- 
tion could then be used to specify the orientation of 
an axis of rotation-inversion a or a mirror hyperplane 
m, or both by the usual notation a / m ,  as in three 
dimensions. The second part consisted of a similar 
sequence of positions, each of which specified, 
according to a separate convention, the orientation 
of a plane. This general principle is retained here, 
but two modifications of detail have been found to 
be desirable as a result of the extension of the 
work. 

1. In paper I the sequence of symbols specifying 
lines and hyperplanes was placed first, because it has 
the most direct analogy to three-dimensional Her- 
mann-Mauguin symbols. However, out of the 227 
crystal classes there are 120 that do not contain axes 
of symmetry or mirror hyperplanes, and only 17 that 
do not possess, or do not require the specification of, 
rotation planes. Moreover, it is the latter symbols 
which are usually the diagnostic ones for assigning 
a crystal class to a crystal system. It is therefore 

desirable to reverse the order of the two sequences 
and place that for the planes first. 

2. Within the sequence of planes each position 
specified the orientation of one plane. However, even 
in the simple systems discussed in paper I it was 
already difficult to devise a systematic order for the 
axial planes, because wx, xy, yz, zw, wy, xz  cannot 
all be listed in a straight forward cyclic order. As a 
result a rather cumbersome convention had to be 
adopted so that it should be possible to deduce which 
pairs of positions correspond to orthogonal 
(absolutely perpendicular) planes. This problem 
becomes still more important and difficult in the 
classes of higher symmetry, and the device has there- 
fore been adopted of assigning each position to a pair 
of orthogonal planes separated by an oblique stroke. 
Thus the axial planes of family V (orthogonal) can 
be specified 

wx / yz  xy  / zw yw / xz, 

and the holosymmetric class 5/02, for example, can 
then be symbolized (in the full form) as 2/2 2/2 2/2 
instead of 222222. This has three advantages: it per- 
mits the planes to be listed in strict cyclic order in 
terms of the planes specified by the 'numerators';  it 
makes clear which planes are orthogonal to one 
another; and it reduces by a factor of two the number 
of orientational positions to be specified. It is to be 
noted that there are in fact three other ways in which 
the axial planes could have been specified in pairs, 
by inverting them in different ways, that is 

xy / zw yz  / wx zx / yw  

wy / xz  yz  / wx zw / xy  

wx / yz  x z  / yw zw / xy. 

These allot a special role to w, x, and y, respectively, 
in that in each set one axis is excluded from the 
'numerators' and is present in all three 'denomi- 
nators'. The preferred arrangement is that which allots 
this special role to z, because this axis has already 
been given a special role by the convention that it is 
projected to the centre of the hyperstereogram. It is 
therefore most natural, when one is looking at a 
hyperstereogram, to regard the three axes w, x, y as 
the ones to be considered in cyclic order. 

As in three-dimensional crystallography it is 
necessary to introduce a different convention in each 
crystal family as to the orientation to be associated 
with each position in the symbol. These conventions 
are given in Table 2. Each direction is specified either 
by a coordinate axis (w, x, y or z) or by an axis symbol 
- a set of four integers in square brackets defining a 
vector in terms of the basis vectors of the axial system 
of the crystal family. Similarly, each plane is specified 
by a pair of such directions lying in it. 

For this specification of conventional directions in 
each family to be meaningful it is of course necessary 
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Table 1. The crystal lographic axes  adopted for the twenty three crystal  f ami l i e s  

For each family there are potentially five lines containing the following information: 
1. A n y  equivalences between the axes. (Absent if not required.) 
2. The angle L w x .  

3. The angles L w y  and L x y .  

4. The angles L w z ,  L x z ,  a n d  L y z .  Equivalences between angles are indicated by the use of the same 
5. A n y  relationships between the angles. (Absent if not required.) 

Family  I Family  VII 
Hexaclinic Hexagonal monoclinic 
a y = - z  

[3 3, a 
e ~" 90 ° 90 ° 

9 0  ° 90  ° 120 ° 

Family  II Fami ly  VIII  
Triclinic Ditetragonal diclinic 
ct W-~ X, y=-- z 

/3 3, 90 ° 
90 o 90 ° 90 ° /3 3, 

180° -3 ,  fl 90 ° 

Fami ly  I I I  Family  IX 
Dic l in ic  Di t r igona!  diclinic 
ot  W=-- x, y - ~  z 

90 ° 90 ° 120 ° 
90 ° 90 ° ~r /3 3' 

8 /3 120 o 
with cos 8 = cos/3  - cos 3, 

Fami ly  IV Fami ly  X 
M o n o c l i n i c  Te t ragona l  o r t h o g o n a i  
a y = - z  

90 ° 90 ° 9 0  ° 

9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 

9 0  ° 9 0  ° 9 0  ° 

Family  X l l I  
D i t r i g o n a r  m o n o c l i n i c  
W ~ X ,  y=--Z 
i 20 ° 

/3 3, 
3' /3 120 ° 
with cos 3, = -½ cos /3  

Fami ly  X I V  
Ditetragonal o r t h o g o n a l  
w=--x,y=---z  

90* 
90 ° 90 ° 
9 0  ° 9 0  ° 9 0  ° 

F a m i l y  X V  

Hexagonal tetragonal 
w = - x , y - ~ z  

90 ° 
9 0  ° 9 0  ° 

9 0  ° 9 0  ° 120 ° 

Fami ly  XVI  
Dihexagonal orthogonal 
w = - x ,  y ~ - x  

120 ° 
9 0  ° 9 0  ° 

9 0  ° 9 0  ° 120 ° 

s y m b o l  i n  2,  3 a n d  4. 

Fami ly  X I X  
D e c a g o n a i  
W=--x=--y=--Z 
ot  

/3 ,~ 
/ 3 / 3 , ~  
with cos/3 = - 0 " 5  - c o s  a 

Fami ly  X X  
Dodecagonai 
w = - x = - y ~ 7 .  

90 ° 
120 ° y 
y 120 ° 90 o 

Fami ly  X X I  
Di-isohexagonal 
w = - x = - y ~ g  

120 ° 
9 0  ° 9 0  ° 

9 0  ° 9 0  ° 120 ° 

Fami ly  X X I I  
Icosagonal 
w=_x=_-y=_z 
ot  

ol ot 

ot ~ ¢t 

with cos a = - 1 / 4  

Fami ly  V Fami ly  XI  Fami ly  XVII  Fami ly  X X I I I  
Orthogonal Hexagonal Orthogonal Cubic Orthogonal Hypercubic 
90 ° y ~ - z  x = - y = - z  w - ~ x = - Y  =-z  

9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 

9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 

9 0  ° 9 0  ° 120 ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 9 0  ° 

Fami ly  VI Fami ly  X I I  
Tetragonal monoclinic Ditetragonal m o n o c l i n i c  
y = - z  w - ~ x , y = - z  

a 9 0  ° 

90 ° 90 ° /3 90 ° 
9 0  ° 9 0  ° 9 0  ° 9 0  ° /3 9 0  ° 

Fami ly  X V l l I  
Octagonal 
w = _ x = _ y = - z  
a 

90 ° a 
180 ° - a  9 0  ° a 

that the arrangement of  the crystallographic axes 
adopted for that family be defined. This is done in 
Table 1. The numbering of the families follows Brown 
et al. (1978), as does the naming of all but three of  
them. In the names of families IX and XIII the term 
'trigonal' has been substituted for 'hexagonal' 
because these families contain only systems with 
trigonal characteristics (see Table 3). Also, the name 
of family XXII has been changed from 'icosahedral' 
to 'icosagonal' to keep its derivation in line with the 
names (octagonal, decagonal etc.) of other families. 
The orientation of the axes has been changed in 
certain cases from that adopted by Brown et al. (1978); 
hexagonal-type axes have always been set at 120 ° 
rather than 60 °, and orthogonal axes have been used 
throughout family XXIII.  

Axes involving crypto-rotation planes 

As defined so far the system of notation deals 
adequately_with rotation planes, with rn hyperplanes, 
and with 1 axes whose erypto-rotation planes have 
no defined orientation. Other axes of rotation-inver- 
sion (3, 4 and 6) require the orientation of their 
crypto-rotation plane to be specified in some way. In 
fact, no problem arises in the case of  3 and 6 axes 
because both give rise to an overt threefold rotation 
plane coincident with their threefold or sixfold 
crypto-rotation plane. This is of  course specified in 
the sequence of planes in the ordinary way, and the 

or 6 symbol in the sequence of axes can always be 
identified with a specified threefold plane in which 
it lies in order to define it completely. This is not true 
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Table 2. Conventions as to the orientations corresponding to the positions in the Hermann-Mauguin type symbols 

Family I Family VIII Family XV 
None WoXo/yz wx/yz xy/w[00 i 2] y[ i 100],/[4 ]'00][0012]; 
Family II Family IX w y [1100] [,0012] 
z WoXo/y z Family XVI 
Family III Family X xz/yzxy/[2100][O012]; wy [,2100] [0012] 
wx/yz wx/yzxy /zw w[001 l]/x[0011]; wxy[O011] Family XVII 
Family IV Family XI wx/yz w[0111]* w[0110J/z[01-10]: wx [0110] 
wx/ yz: y z wx/ yz xy/  w[OOi l ] Yw/ x[OOi l ]; w x y [00il] Family XVIII 
Family V Family XII WoYo/ZXo x[lOlO]/z[lOiO] 
wx /yzxy /wzyw/xz ;  w x y z  woxo/yzwy/xz Family XIX 

Family VI Family XIII (V) y[0101]/[211 l][010"l] 
wx/yz; w x y [001 I] WoXo/yz wy/[1200][O012] Family XX 

Family VI I Family X IV WoXo/yz woYo/xz y[02011/[2010] 
wx/yz; w x y  [ , 0 0 2 1 ]  wx/yzxy /wz  [1100][001 l]/[l'100][00il] : 

wy [1100] [001 l] 
Family XXI 
wx/yz z['ll001/[ll00][0021 ] wEOOl2]/y[1200] [1010][0111]/[1010][01 I l l  [,1010][0101]/[1010][0101]: w y [21001 [0021] [1001] [,]001] [2121] 

Family XXII 
(V) wx* y[,0101]/[,2111][0101] y[1001]/[121 l][1001]; w Ill00] [02121 

Family XXIII 
wx/yz xy_/wz z[ 11101/[ 1 TOO][. 1010] w['0011 ]/xroo 11 ] [ 1 i 001100111/[1100][OOl 11 [ 11001[,0011 ]/[ I lOO][0011 ] [ I 010110101 ]/[ 1010110]01 ] 
[1010][0101]/[10i0][0101]; w I11001 [1010] [ I l l  l]. 

In families VIII, IX, XII, XIII and XX WoX o indicates a (crystailographically irrational) plane orthogonal to yz, and in family XX woy o similarly indicates 
a plane orthogonal to xz. 

In family XVIII w0, Xo, Yo indicate (crystallographicaUy irrational) axes such that Yo lies in yz at 90 ° to z, x o lies in xyz at 90 ° to Yo and z, and w o is 
orthogonal to Xo, Yo and z. 

* There are no rotation planes orthogonal to the orientations indicated thus. 

of a 4 axis, and therefore the symbol (4), in paren- 
theses, is inserted in the appropriate position in the 
sequence of planes to complete the specification of 
the orientational characteristics of a 4 axis giyen in 
the sequence of axes. In one instance it is necessary 
(in order to avoid ambiguity) to denote by a subscript 
number, appended to the symbol of the 4 axis, the 
position in the sequence of planes in which its crypto- 
rotation plane is specified. 

The point symmetry elements :3, ~ and 

These symmetry elements also have a crypto-rotation 
plane whose orientation must be specified. When they 
occur alone the symbol 3, 4 or 6 is simply inserted in 
the appropriate position in the sequence of planes. 
When they arise from combinations of overt 3, 4, or 
6 operations with a separately defined or implied 
operation they are not specified. 

The point symmetry elements III, l h ,  IV and VIII 

Although a symmetry element of this type does not 
have a uniquely defined pair of orthogonal crypto- 
rotation planes, it is always compatible with its 
crypto-rotation planes lying on one (and only one) 
of the conventionally chosen pairs in a given crystal 
family. Thus the symbols III, III and IV can be 
meaningfully placed at the appropriate positions 

among the sequence of planes in order to define the 
orientational characteristics of the corresponding 
symmetry operations. When these operations arise 
from mutually orthogonal pairs of overt rotation 
planes (3/3, 6/6, 4/4) they do not require any separate 
specification. The symbol III is only used when it is 
present alone and not when it arises from the combi- 
nation of a III operation with a separately defined or 
implied I operation. When both Ill and IV operations 
or two differently oriented IV operations, or an VIII 
and a differently oriented IV operation are present 
together in a class it is necessary to indicate whether 
they are of the same hand, of opposite hand, or of 
both hands. This is done by use of a subscript on the 
second symbol of the two (s for same, o for opposite), 
and no subscript indicates that there is no such 
restriction. 

Where the VIII operation has to be specified its 
symbol occupies the position in the sequence of 
planes appropriate to that of the IV operation that is 
its square. The direction of the initial line of the 
graphical VIII symbol is not specified in the class 
symbol, but is defined by convention. 

The point symmetry elements V and "v' 

In the two families in which these occur their orienta- 
tional characteristics are specified by the conventions 
for the family. The V symbol is then placed before 
the sequence of plane symbols. Since the ~' operation 
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Table  3. The Hermann-Mauguin type symbols of the 227 crystal classes 

Family I Hexaclinic 
System 1 

l /Ol l 
1/02 I 

Family II Triclinic 
System 2 

2/01 m 
2/02 T 
2/'03 l~ m 

Family I l l  Diclinic 
System 3 

3/01 2 
3/02 2/2 

Family IV Monoclinic 
System 4 

4/01 2; m m 
4/02 -/23 T m 
4/03 2; 1 1 
4/04 2/2; m m 

Family V Orthogonal 
System 5 

5/01 - / 2  - / 2  - / 2  
5/02 2/2 2 2 

System 6 
6/01 - / 2  - / 2  - / 2 ;  m m m T 
6/02 - / 2 - / 2 - / 2 ;  1 1 i m 
6/03 2/2 2 2; m m m m 

Family VI Tetragonal monoclinic 
System 7 

7/01 
7/02 4 
7/03 4/2 
7/04 ~ t ;__  i m 
7/05 4; - - i i 
7/06 4 ; - -  m m 
7/07 4/2;  - -  m m 

Family VII Hexagonal monoclinic 
System 8 

8/01 3 
8/02 
8/03 3 ; - -  m 
8/04 3; - - i 
8/05 ] ; - -  i /m 

System 9 
9/01 6 
9/02 
9/03 6/2 
9/04 6; - -  _m_m 

9/05 6 ; - -  1 1 
9/06 g ; - -  m T 
9/07 6 / 2 ; - -  m m 

Family VIII Ditetragonal diclinic 
System 10 

10/01 IV 

Family IX Ditrigonal diclinic 
System 11 

11/01 III  
11/02 IiI 

Family X Tetragonal orthogonal 
System 12 

12/01 (74); - 
12/02 (4)/2; 4 4 
12/03 (4) 2; - 74 - m 
12/04 (74) - / 2 ;  - 4 - I 

12/05 (~,)/2 2; 4 4 - m 
System 13 

13/01 4; m T 
13/02 4; T 74/m 
13/03 4 2 2 
13/04 4 2 - / 2  
13/05 4/2;  m m 
13/06 4 2 - / 2 ;  m T m m 
13/07 4, 2 2; i 4/m i m 
13/08 4 - / 2  2; m 1 l I 
13/09 4/2 2 2 
13/!0 4/2 2 2; m m m m 

Family XI Hexagonal orthogonal 
System 14 

14/01 3; 
14/02 3; m 
14/03 3 - 2 
14/04 ~; 1/m 
14/05 3 - 2/2 
14/06 3 - 2; g - m 
14/07 3 - - / 2 ;  3 - 1 
14/08 3 - - / 2 ;  m 6 m 
14/09 3 - 2 ;  m g T  
14/10 3 - 2/2; m 6 m 

System 15 
15/01 6; m 
15/02 6; m m 
15/03 6; 3 
15/04 6 - /2  2 
15/05 ~ - / 2  - / 2  
15/06 6 2 - / 2 ;  m T m m 
15/07 6 - / 2  - / 2 ;  m m m T 
15/08 6/2; m m 
15/09 6 - / 2  2; m 1 1 I 
15/10 g 2 2 ; 3 3  m i 
15/11 6/2 2 2 
15/12 6/2 2 2; m m m m 

Family XII Ditetragonal monoclinic 
System 16 

16/01 IV 2/2 

Family XIII  Ditrigonal monoclinic 
System 17 

17/01 III - / 2  
17/02 II1 2/2 

Family XIV Ditetragonal orthogonal 
System 18 

18/01 IV/2/2 
18/02 IV/(4)/2; ~, - m 
18/03 (4)/(4) - 2; 4 4 
18/04 IV/2/2 2 2 
18/05 IV/(4)/(4) 2 2:74 4 m m 

System 19 
19/01 (4)/4; 4 - 4 
19/02 4/4 
19/03 4/4; m - m 
19/04 (4)/4 2; 4 - 4 m 
19/05 4/4 2 2 
19/06 4/4 2 2; m m m m 

FamilyXV Hexagonal tetragonal 
System 20 

20/01 3/4 
20/02 3/~ 
20/03 3/(74); - - - 4 
20/04 3/4; - m - 

20/05 6/4 
20/06 3/4; 3 - 3 
20/07 3/4 2 2 
20/08 3/4; m - m 
20/09 3/(~,); - 4 /m 
20/10 3/4; 3 -  m 
20/11 3/4 2/2 2 
20/12 3/(4) - 2; m 
20/13 3/(4) - 2; 3 - - 
20/14 6/(4); - 4 - 4 
20/15 6 / 4 ; -  m - m 
20/16 3/4 2 2; 3 m 3 T 
20/17 3 / 4 - / 2  - / 2 ;  m m m T 
20/18 6/4;  m - m 
20/19 6/4 2 2 
20/20 3/4 2 - / 2 ;  3 m m i 
20/21 6/(74) - 2; m 4 - 4 
20/22 6/4 2 2; m m m m 

Family XVI Dihexagonal orthogonal 
System 21 

21/01 In/-/2 
21/02 I I I /2 /2  
21/03 111/-/2 - / 2  
21/04 I I I /2 /2  2 

System 22 
22/01 3/3 
22/02 3/3 
22/03 3 / 3 ; - - -  m 
22/04 3/3; - - - 3 
22/05 3/3 - / 2  
22/06 3 / 3 ; -  - -  1/m 
22/07 3/3 2/2 
22/08 3/3 2 ; - -  m m 
22/09 3/3 - / 2 ;  - - 3 m 

_ _  

22/10 3/3 2; - - 3 3 
22/11 3/3 2 / 2 ; - -  m m 

System 23 
23/01 3/6 
23/02 6/6 
23/03 3/6;  3 - 3 
23/04 3/6; m - m 
23/05 3/6 - / 2  
23/06 3/6;  - 3 - m 
23/07 6/6; m - m 
23/08 6/6 2 
23/09 3/6 - / 2 : 3  3 3 m 
23/10 3/6 - / 2 ;  m m m 
23/11 6 / 6 2 ;  m m m m  

Family XVII Cubic orthogonai 
System 24 

24/01 2 3 
24/02 2/2 3 
24/03 (4) 3; 4 -  m 
24/04 (4) 3; - 4 T 
24/05 (,~)/2 3; 74 74 m 

System 25 
25/01 2 3; g m 
25/02 2 3; m 
25/03 4 3 2 
25/04 4 3 -/2 
25/05 2/2 3; m m 

25/06 4/2 3 2 

25/07 432;3mm 

25/08 (4) 3 - / 2 ;  3 71/m i 
25/09 (~,) 3 - / 2 ;  74/m T m 
25/10 4 3  2; m 4T 
25/11 4/2 3 2; m m m 

Family XVIII  Octagonal 
System 26 

26/01 VIII 
26/02 VIII 2/2 

Family XIX Decagonal 
System 27 

27/01 V 
27/02 
27/03 V 2 
27/04 v 2/2 

Family XX Dodecagonal 
System 28 

28/01 IV IIIo 
28/02 IV 111o2/2 

Family XXI Di-isohexagonal orthogonal 
System 29 

29/01 3/3 - - - 2 
29/02 3/3 - - - 2/2 
29/03 3/3 - / 2  - - / 2  2 
29/04 3/3 (4); . . . .  ~, 
29/05 3/3 2/2 - 2 2 
29/06 3/3 (74)/2; . . . .  4 
29/07 3/3 ( 4 ) - 2 2 ; 6 6 m m 4  
29/08 3/3 (~,) - 2 2; - - 3 3 - 4 
29/09 3/3 (~,)/2 - 2 2; 6 6 m m ~, ~, 
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Family XXI (cont.) 
System 30 

30/01 I I I  IVs 
30/02 I I I  IVo/2/2  
30/03 I I I / 2 / 2  IVo - 2 
30/04 III  IV s 2 / 2 -  2 
30/05 3/3 IV 
30/06 I I I / 2 / 2  IVo/2 2 2 2 
30/07 6/6 IV - - 2 
30/08 3/3 IV 2/2 2 
30/09 3/3 IV/2 /2  
30/10 6/6 IV/2/2  2 2 
30/11 6/6  (3,)/(3,) 2; . . . .  4 4 4 
30/12 3/3 IV/2/(4) ;  6 6 m m - - 3, 
30/13 6/6 (4)/(4) 2 2 2; 

m m m m 4 4 4  

Family XXII  Icosagonal 
System 31 

31/Ol V - (3,); - - 3, 
31/02 V - (4)/2; 4 - 4 
31/03 V 3 2 2 
31/04 V 3 (4_-) (4_-); 3, m_ 
31/05 V 3 (4) (4); - 1 4 
31/06 V 3 2_/2 2 _ _ 
31/07 V 3 (4)/2 (4); 4 m 3, 

Table 3 (cont.) 
Family X X I I I  Hypereubic System 33 Dodeeagonal  hypereubic 
System 32 33/01 IV IVs II io 

32/01 IV IV s 33/02 VIII  - I I io  
32/02 V I I I / 2 / 2  IVo 33/03 IV IV s I l l s  
32/03 IV IVs - 2/2 33/04 IV IVs II io 2/2  
32/04 IV/2 /2  IVs - . . . .  2 33/05 IV/2 /2  IVs I l l s  - - - - 2 
32/05 IV IVs 3 33/06 IV IVs I I I ,  2 /2  
32/06 VIII/2/2 IVs - 2 - -  - 2 33/07 IV IV, 3/3 
32/07 V I I I / 2 / 2  2 - - 2 2 33/08 IV/2/2  IVs/2 I I I , -  - - 2 2 
32/08 V I I I / 4 / 4  IVo - - - - 2 33/09 IV/2 /2  IVs I l l s  2 - - - 2 
32/09 (4)/(4) IV - - 2 (4)/(4) 2; 3, _ _ 3, 33/10 4 /4  IV I l l s  - - - - 4 /4  
32/10 IV/2 /2  IV/2 - - 2  2 2 2 3 3 / i l  IV IVs 3/3 2/2 
32/11 IV IV, 3 2 33/12 4 /4  IV I l l  s 2 - - 4 /4  2 
32/12 4 /4  I V / 2 - 2  2 2 2 2 33/13 I V / 2 / 2 I V / 2 3 / 3 - 2 2 2 2  
32/13 (4)/(4) (4)/(4)--  - 2  2; 3,~m 4 33/14 (4)/(4) (4)/(4) 3/3 - - - (4)/(4) 
32/14 (4)../(4) 2 - - (4)/(4) (4)/(4) 2 2; (4)/(4); 4 m m 

4 m - 4 33/15 4 /4  4 /4  3/3 2 4 /4  4/4  4 /4  4 /4  
32/15 4 /4  (4)_/(4) - 2 (4)/(4) (3,)/(3,) 2 2; 33/16 4 /4  4 /4  3/3 2 4 /4  4 /4  4 /4  4/4;  

- - 4 4  m m m m .  
32/16 IV/2 /2  IV/2 3 - 2 2 2 2 

. . . .  

32/17 4 /4  (4)/(4) - 2 (4)/(4) (4)/(4) 2 2; 
r a m 4 4  

. . . . . .  

32/18 (4)/(4) (4)/(4) 3 - - 2 2 2 2; m 4 4 
32/19 (3,)/(i1) (4)/(4) 3 - (3,)/(S~) (7~)/(3,) 

(4)/(4)(4)/(4); 4 m m 
32/20 4 /4  4 /4  3 2 2 2 2 2 
32/21 4 /4  4 /4  3 2 (4)/(4) (4)/(4) (4)/(4) 

(4)/(4); m m m 

involves explicit V and 1 operations it is only used if 
the remainder of the class symbol does not imply the 

operation (see below). 

The point symmetry elements VI, Xll, x h  and XII' 

These are never used in the class symbols because 
the corresponding operations are all expressible in 
terms of the products of simpler overt operations, as 
has been discussed in paper II (Whittaker, 1984a). 
The orientational characteristics of these overt com- 
ponents are therefore expressed by the appropriate 
positions of their symbols in the sequence of planes 
as discussed above. 

The point symmetry element 

This symmetry element occurs by itself only in class 
1/02, for which it is the only symbol. Elsewhere it 
arises either as a component of 3, III, IV, ~/, or 
VIII, or from the presence of 1/m in the sequence 
of axial symbols, or from the presence of a pair of 
orthogonal even-order rotation_planes- 2/_2, 4/2, 6/2, 
(4)/2, 4/4, 6/4, (4)/4, 6/6, 6/(4), or (4)/(4). In none 
of these cases is 1 included explicitly in the symbol 
(cf. the corresponding treatment of T in three 
dimensions). 

If the 1 operation is present then every even-order 
rotation plane is accompanied by an orthogonal rota- 
tion plane of order 2 (or of higher even order), and 
every m hyperplane is accompanied by a perpen- 
dicular T axis. For the sake of brevity, once the first 

such orthogonal pair of even-order rotation planes 
has been recorded subsequent occurrences of twofold 
rotation planes that can be regarded as derived from 
the effect of the ] operation are omitted. Thus the 
class symbol 4/2 2/2 2/2 is simplified to 4/2 2 2. 
Similarly, i / m  is simplified to m following an earlier 
implication of a 1 operation either in the sequence 
of planes or in the sequence of axes. For the sake of 
clarity it has seemed preferable not to extend this 
system of omissions to the effects of 1 operations 
implied by the symbols of point-symmetry elements. 

Null symbols 

In three-dimensional crystallography it is never 
necessary to use null symbols in the Hermann- 
Mauguin notation, unless it is desired to indicate a 
departure from normal conventions as in 1 1 2 /m to 
denote a monoclinic class with the unique axis on z. 
However, in four dimensions the greater number of 
orientationally defined positions in the notation, and 
the presence of the two separately defined sequences 
for planes and axes, make it impracticable to avoid 
the use of null symbols. The symbol adopted is the 
dash (-). Its use is kept to a minimum by omitting it 
in trailing positions both in the sequence of planes 
and in the sequence of axes. In other words, it is only 
used when there is a following position in the 
sequence that is occupied. If either sequence is wholly 
null then the whole sequence (and the semicolon) is 
omitted. The null symbol (and the oblique stroke) is 
also omitted if the 'denominator position' of a pair 
of orthogonal planes is unoccupied. 
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Economy of symbols v e r s u s  clarity 

Although the specification of an excessive number of 
symmetry elements in a symbol of Hermann- 
Mauguin type can be confusing, reduction of the 
number to an absolute minimum can be mystifying. 
The symbols proposed, although reasonably concise, 
are therefore not claimed to have been condensed to 
the maximum possible extent. 
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Abstract 

A revision of the classical statistical methods of phase 
determination is presented which widens their theo- 
retical foundations and consolidates their practical 
implementation, thus bringing about a major increase 
of their power. In a brief introductory survey (§ 1), 
the basic concepts and mathematical techniques of 
direct methods are analysed. Closer scrutiny (§ 2) 
reveals that severe inadequacies still impair the effec- 
tiveness of these methods. The asymptotic character 
of the series used to approximate joint distributions 
of structure factors demands that great caution be 
exercised to guarantee their accuracy, and this 
requirement can only be fulfilled if they are used 
within a multisolution algorithm in which the prior 
distribution of atoms is constantly updated so as to 
incorporate at every stage all the phase information 
assumed to that point. Further limitations follow from 
the traditional practice of approximating joint distri- 
butions by products of marginal distributions of 
single invariants. A scheme for simultaneously over- 
coming both difficulties is then proposed. The pivotal 
element of this scheme is a device, based on Jaynes's 
maximum-entropy principle, for exploiting the prior 

* Editorial Note: Papers exceeding the normal length limitations 
of the journal are scrutinized particularly carefully to ensure they 
meet the stated goal of providing the maximum density of informa- 
tion consistent with clarity of presentation. Considerable reduc- 
tions in length are often achievable in revision without loss of 
essential information. This very long paper, having passed all 
normal editorial procedures, constitutes a rare exception to the 
normal upper bound. 

t Present address: LURE, BStiment 209C, 91405 Orsay CEDEX, 
France. 

knowledge of some structure factors in the construc- 
tion of the joint distributions of others conditional 
to that knowledge. Jaynes's maximum-entropy for- 
malism is presented and systematically applied to the 
construction of the requisite non-uniform prior distri- 
butions of atoms in § 3. The problem of effectively 
approximating conditional distributions of very large 
numbers of structure factors is solved in § 4 by a novel 
technique of 'maximum-entropy inversion' of Karle- 
Hauptman matrices, and the result obtained is shown 
to generalize the most sophisticated probabilistic for- 
mulae hitherto obtained. This procedure is proved in 
§ 5 to coincide with an enhancement of the standard 
method of asymptotic expansions by means of 
Daniels's saddlepoint approximation. Its relationship 
to determinantal methods is investigated in § 6. A 
numerical algorithm for implementing these ideas is 
presented in § 7, together with an application to data 
from the small protein Crambin, and a unified strategy 
for its use ab initio is described and discussed in § 8. 
It is concluded that the phase-determination strategy 
proposed here will expedite the realization of the full 
potential of probabilistic direct methods, and is likely 
to bring macromolecular structures within their 
reach. 

Introduction 

Thirty years ago Hauptman and Karle pioneered the 
use of sophisticated methods of probability theory 
for directly determining the phases of structure factors 
from the sole knowledge of their amplitudes (Haupt- 
man & Karle, 1953). After an initial latency period, 
these probabilistic direct methods underwent a 
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